Here's an example where LangChain uses the Hugging Face Transformers library to answer questions from a custom knowledge base using Retrieval-Augmented Generation (RAG).
🔑 What Will This Example Do?
- Load custom documents into a knowledge base.
- Split documents into smaller text chunks.
- Embed text chunks using a Sentence Transformer model from Hugging Face.
- Store embeddings in a local FAISS vector database.
- Retrieve relevant chunks using similarity search.
- Use a Transformer LLM to generate answers based on the retrieved context.
Prerequisites
Install required libraries:
pip install langchain transformers sentence-transformers faiss-cpu pypdf
Code Example
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import pipeline
# 1. Load Custom Knowledge Base (PDF)
pdf_loader = PyPDFLoader("knowledge_base.pdf") # Replace with your PDF file path
documents = pdf_loader.load()
# 2. Split Text into Chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = text_splitter.split_documents(documents)
# 3. Embed Chunks using Hugging Face Sentence Transformer
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
db = FAISS.from_documents(chunks, embedding_model)
# 4. Setup Hugging Face LLM Pipeline
qa_model = pipeline("text-generation", model="google/flan-t5-small")
llm = HuggingFacePipeline(pipeline=qa_model)
# 5. Create Retrieval-based QA Chain
retriever = db.as_retriever()
qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever, chain_type="stuff")
# 6. Ask Questions
query = "What is the main conclusion of the document?"
answer = qa_chain.run(query)
print(f"Q: {query}")
print(f"A: {answer}")
🔑 How It Works
- The PDF is converted into text.
- The text is split into overlapping chunks to improve retrieval.
- Each chunk is embedded into vector space using Hugging Face Sentence Transformers.
- FAISS stores these embeddings for similarity search.
- When a query is made, the most relevant chunks are retrieved.
- The LLM (FLAN-T5 in this case) generates an answer using the retrieved chunks as context.
📌 Optional Improvements
- Use larger models like
flan-t5-xlorgpt2for better answers. - Enable streaming generation with Hugging Face pipelines.
- Replace FAISS with ChromaDB or Qdrant for advanced filtering.
When to Use This Setup?
| Use Case | Recommendation |
|---|---|
| Local Inference | ✅ Full Local Pipeline |
| Custom Knowledge Base | ✅ Best for small to medium-sized docs |
| Privacy | ✅ No cloud APIs |
| Fine-Tuning | 🔥 Easy model customization |
Comments
Post a Comment